the Yang-Baxter equation, and Hopf Galois structures

Lorenzo Stefanello, Andrea Caranti

May 25, 2021

Outline

- Introduction
- Introduction
- The Yang-Baxter equation
- Introduction
- The Yang-Baxter equation
- Hopf Galois structures

Introduction

Notation and convention

Let (G, \cdot) be a group, and $g \in G$.

Notation and convention

Let (G, \cdot) be a group, and $g \in G$.

- If $\psi \in \operatorname{End}(G, \cdot)$, we write ${ }^{\psi} g$ for the image of g under ψ.

Notation and convention

Let (G, \cdot) be a group, and $g \in G$.

- If $\psi \in \operatorname{End}(G, \cdot)$, we write ${ }^{\psi} g$ for the image of g under ψ.
- We denote by λ the left regular representation, and by ρ the right regular representation.

Let (G, \cdot) be a group, and $g \in G$.

- If $\psi \in \operatorname{End}(G, \cdot)$, we write ${ }^{\psi} g$ for the image of g under ψ.
- We denote by λ the left regular representation, and by ρ the right regular representation.
- We write $\iota:(G, \cdot) \rightarrow \operatorname{Aut}(G, \cdot)$ for the homomorphism that sends $g \in G$ to the conjugation-by- g automorphism.

Let (G, \cdot) be a group, and $g \in G$.

- If $\psi \in \operatorname{End}(G, \cdot)$, we write ${ }^{\psi} g$ for the image of g under ψ.
- We denote by λ the left regular representation, and by ρ the right regular representation.
- We write $\iota:(G, \cdot) \rightarrow \operatorname{Aut}(G, \cdot)$ for the homomorphism that sends $g \in G$ to the conjugation-by- g automorphism.
- If $\psi \in \operatorname{End}(G, \cdot)$, we write $[g, \psi]:=g \cdot \psi g^{-1}$, and $[G, \psi]=\langle[g, \psi]: g \in G\rangle$.

Let (G, \cdot) be a group, and $g \in G$.

- If $\psi \in \operatorname{End}(G, \cdot)$, we write ${ }^{\psi} g$ for the image of g under ψ.
- We denote by λ the left regular representation, and by ρ the right regular representation.
- We write $\iota:(G, \cdot) \rightarrow \operatorname{Aut}(G, \cdot)$ for the homomorphism that sends $g \in G$ to the conjugation-by- g automorphism.
- If $\psi \in \operatorname{End}(G, \cdot)$, we write $[g, \psi]:=g \cdot \psi g^{-1}$, and $[G, \psi]=\langle[g, \psi]: g \in G\rangle$.
- If (G, \cdot, o) is a skew brace, we denote by g^{-1} the inverse of g with respect to \cdot, and by \bar{g} the inverse of g with respect to \circ.

Gamma functions

Theorem ([Guarnieri and Vendramin, 2017])
Let (G, \cdot) be a group. The following data are equivalent.

Gamma functions

Theorem ([Guarnieri and Vendramin, 2017])
Let (G, \cdot) be a group. The following data are equivalent.

- An operation o such that (G, \cdot, \circ) is a skew brace.

Gamma functions

Theorem ([Guarnieri and Vendramin, 2017])
Let (G, \cdot) be a group. The following data are equivalent.

- An operation o such that (G, \cdot, \circ) is a skew brace.
- A regular subgroup $N \leq \operatorname{Perm}(G)$ which normalises $\lambda(G)$.

Theorem ([Guarnieri and Vendramin, 2017])
Let (G, \cdot) be a group. The following data are equivalent.

- An operation \circ such that (G, \cdot, \circ) is a skew brace.
- A regular subgroup $N \leq \operatorname{Perm}(G)$ which normalises $\lambda(G)$.
- A function $\gamma: G \rightarrow \operatorname{Aut}(G, \cdot)$ such that, for every $g, h \in G$,

$$
\gamma(g \cdot \gamma(g) h)=\gamma(g) \gamma(h) .
$$

Theorem ([Guarnieri and Vendramin, 2017])
Let (G, \cdot) be a group. The following data are equivalent.

- An operation \circ such that (G, \cdot, \circ) is a skew brace.
- A regular subgroup $N \leq \operatorname{Perm}(G)$ which normalises $\lambda(G)$.
- A function $\gamma: G \rightarrow \operatorname{Aut}(G, \cdot)$ such that, for every $g, h \in G$,

$$
\gamma(g \cdot \gamma(g) h)=\gamma(g) \gamma(h) .
$$

The function γ is called gamma function.

Theorem ([Guarnieri and Vendramin, 2017])
Let (G, \cdot) be a group. The following data are equivalent.

- An operation \circ such that (G, \cdot, \circ) is a skew brace.
- A regular subgroup $N \leq \operatorname{Perm}(G)$ which normalises $\lambda(G)$.
- A function $\gamma: G \rightarrow \operatorname{Aut}(G, \cdot)$ such that, for every $g, h \in G$,

$$
\gamma(g \cdot \gamma(g) h)=\gamma(g) \gamma(h) .
$$

The function γ is called gamma function. Explicitly,

Theorem ([Guarnieri and Vendramin, 2017])
Let (G, \cdot) be a group. The following data are equivalent.

- An operation \circ such that (G, \cdot, \circ) is a skew brace.
- A regular subgroup $N \leq \operatorname{Perm}(G)$ which normalises $\lambda(G)$.
- A function $\gamma: G \rightarrow \operatorname{Aut}(G, \cdot)$ such that, for every $g, h \in G$,

$$
\gamma(g \cdot \gamma(g) h)=\gamma(g) \gamma(h) .
$$

The function γ is called gamma function. Explicitly,

$$
\gamma(g) h=g^{-1} \cdot(g \circ h),
$$

Theorem ([Guarnieri and Vendramin, 2017])
Let (G, \cdot) be a group. The following data are equivalent.

- An operation \circ such that (G, \cdot, \circ) is a skew brace.
- A regular subgroup $N \leq \operatorname{Perm}(G)$ which normalises $\lambda(G)$.
- A function $\gamma: G \rightarrow \operatorname{Aut}(G, \cdot)$ such that, for every $g, h \in G$,

$$
\gamma(g \cdot \gamma(g) h)=\gamma(g) \gamma(h) .
$$

The function γ is called gamma function. Explicitly,

$$
\begin{aligned}
\gamma(g)_{h} & =g^{-1} \cdot(g \circ h), \\
N & =\{\lambda(g) \gamma(g): g \in G\} .
\end{aligned}
$$

Bi-gamma functions

Theorem ([Childs, 2019], [Caranti, 2020])
Let (G, \cdot) be a group. The following data are equivalent.

Theorem ([Childs, 2019], [Caranti, 2020])
Let (G, \cdot) be a group. The following data are equivalent.

- An operation o such that (G, \cdot, \circ) is a bi-skew brace.

Theorem ([Childs, 2019], [Caranti, 2020])
Let (G, \cdot) be a group. The following data are equivalent.

- An operation o such that (G, \cdot, \circ) is a bi-skew brace.
- A regular subgroup $N \leq \operatorname{Perm}(G)$ which normalises, and is normalised by, $\lambda(G)$.

Theorem ([Childs, 2019], [Caranti, 2020])

Let (G, \cdot) be a group. The following data are equivalent.

- An operation o such that (G, \cdot, \circ) is a bi-skew brace.
- A regular subgroup $N \leq \operatorname{Perm}(G)$ which normalises, and is normalised by, $\lambda(G)$.
- An antihomomorphism $\gamma:(G, \cdot) \rightarrow \operatorname{Aut}(G, \cdot)$ such that, for every $g, h \in G$,

$$
\gamma(g . \gamma(g) h)=\gamma(g) \gamma(h) .
$$

Theorem ([Childs, 2019], [Caranti, 2020])

Let (G, \cdot) be a group. The following data are equivalent.

- An operation o such that (G, \cdot, \circ) is a bi-skew brace.
- A regular subgroup $N \leq \operatorname{Perm}(G)$ which normalises, and is normalised by, $\lambda(G)$.
- An antihomomorphism $\gamma:(G, \cdot) \rightarrow \operatorname{Aut}(G, \cdot)$ such that, for every $g, h \in G$,

$$
\gamma(g \cdot \gamma(g) h)=\gamma(g) \gamma(h) .
$$

The function γ is called bi-gamma function.

Our setting: $\varepsilon=-1$

Let (G, \cdot) be a group, and $\psi \in \operatorname{End}(G, \cdot)$.

Our setting: $\varepsilon=-1$

Let (G, \cdot) be a group, and $\psi \in \operatorname{End}(G, \cdot)$.
Theorem ([Caranti and LS, 2021])
The following are equivalent.

Our setting: $\varepsilon=-1$

Let (G, \cdot) be a group, and $\psi \in \operatorname{End}(G, \cdot)$.

Theorem ([Caranti and LS, 2021])

The following are equivalent.

- ψ satisfies ${ }^{\psi}[[G, \psi], G] \leq Z(G, \cdot)$.

Our setting: $\varepsilon=-1$

Let (G, \cdot) be a group, and $\psi \in \operatorname{End}(G, \cdot)$.

Theorem ([Caranti and LS, 2021])

The following are equivalent.

- ψ satisfies ${ }^{\psi}[[G, \psi], G] \leq Z(G, \cdot)$.
- (G, \cdot, \circ) is a bi-skew brace, for $g \circ h=g \cdot{ }^{\psi} g^{-1} \cdot h \cdot{ }^{\psi} g$.

Let (G, \cdot) be a group, and $\psi \in \operatorname{End}(G, \cdot)$.

Theorem ([Caranti and LS, 2021])

The following are equivalent.

- ψ satisfies ${ }^{\psi}[[G, \psi], G] \leq Z(G, \cdot)$.
- (G, \cdot, \circ) is a bi-skew brace, for $g \circ h=g \cdot \psi g^{-1} \cdot h \cdot{ }_{g} g$.
- The function γ define by $\gamma(g)=\iota\left({ }^{\psi} g^{-1}\right)$ is a bi-gamma function for ($G, \cdot)$.

Let (G, \cdot) be a group, and $\psi \in \operatorname{End}(G, \cdot)$.

Theorem ([Caranti and LS, 2021])

The following are equivalent.

- ψ satisfies ${ }^{\psi}[[G, \psi], G] \leq Z(G, \cdot)$.
- (G, \cdot, \circ) is a bi-skew brace, for $g \circ h=g \cdot \psi g^{-1} \cdot h \cdot{ }_{g} g$.
- The function γ define by $\gamma(g)=\iota\left({ }^{\psi} g^{-1}\right)$ is a bi-gamma function for ($G, \cdot)$.

If any of these holds, then $N=\left\{\lambda(g) \iota\left({ }^{\psi} g^{-1}\right): g \in G\right\}$ is a regular subgroup of $\operatorname{Perm}(G)$ which normalises, and is normalised by, $\lambda(G)$.

Let (G, \cdot) be a group, and $\psi \in \operatorname{End}(G, \cdot)$.
Theorem ([Caranti and LS, 2021])
The following are equivalent.

- ψ satisfies ${ }^{\psi}[[G, \psi], G] \leq Z(G, \cdot)$.
- (G, \cdot, \circ) is a bi-skew brace, for $g \circ h=g \cdot{ }^{\psi} g^{-1} \cdot h \cdot{ }^{\psi} g$.
- The function γ define by $\gamma(g)=\iota\left({ }^{\psi} g^{-1}\right)$ is a bi-gamma function for ($G, \cdot)$.

If any of these holds, then $N=\left\{\lambda(g) \iota\left({ }^{\psi} g^{-1}\right): g \in G\right\}$ is a regular subgroup of $\operatorname{Perm}(G)$ which normalises, and is normalised by, $\lambda(G)$.
This result generalises [Koch, 2020], where the map ψ is abelian.

The Yang-Baxter equation

Main definitions

Definition ([Drinfel'd, 1992])

A set-theoretic solution of the Yang-Baxter equation is a couple (X, r), where $X \neq \emptyset$ is a set, and

Definition ([Drinfel'd, 1992])

A set-theoretic solution of the Yang-Baxter equation is a couple (X, r), where $X \neq \emptyset$ is a set, and

$$
\begin{aligned}
r: X \times X & \rightarrow X \times X \\
(x, y) & \mapsto\left(\sigma_{x}(y), \tau_{y}(x)\right)
\end{aligned}
$$

is a bijective map satisfying

Definition ([Drinfel'd, 1992])

A set-theoretic solution of the Yang-Baxter equation is a couple (X, r), where $X \neq \emptyset$ is a set, and

$$
\begin{aligned}
r: X \times X & \rightarrow X \times X \\
(x, y) & \mapsto\left(\sigma_{x}(y), \tau_{y}(x)\right)
\end{aligned}
$$

is a bijective map satisfying

$$
\left(r \times \mathrm{id}_{x}\right)\left(\mathrm{id}_{x} \times r\right)\left(r \times \mathrm{id}_{x}\right)=\left(\mathrm{id}_{x} \times r\right)\left(r \times \mathrm{id}_{x}\right)\left(\mathrm{id}_{x} \times r\right)
$$

Definition ([Drinfel'd, 1992])

A set-theoretic solution of the Yang-Baxter equation is a couple (X, r), where $X \neq \emptyset$ is a set, and

$$
\begin{aligned}
r: X \times X & \rightarrow X \times X \\
(x, y) & \mapsto\left(\sigma_{x}(y), \tau_{y}(x)\right)
\end{aligned}
$$

is a bijective map satisfying

$$
\left(r \times \mathrm{id}_{x}\right)\left(\mathrm{id}_{x} \times r\right)\left(r \times \mathrm{id}_{x}\right)=\left(\mathrm{id}_{x} \times r\right)\left(r \times \mathrm{id}_{x}\right)\left(\mathrm{id}_{x} \times r\right)
$$

We say that (X, r) is non-degenerate if, for every $x \in X, \sigma_{x}$ and τ_{x} are bijective,

Definition ([Drinfel'd, 1992])

A set-theoretic solution of the Yang-Baxter equation is a couple (X, r), where $X \neq \emptyset$ is a set, and

$$
\begin{aligned}
r: X \times X & \rightarrow X \times X \\
(x, y) & \mapsto\left(\sigma_{x}(y), \tau_{y}(x)\right)
\end{aligned}
$$

is a bijective map satisfying

$$
\left(r \times \mathrm{id}_{x}\right)\left(\mathrm{id}_{x} \times r\right)\left(r \times \mathrm{id}_{x}\right)=\left(\mathrm{id}_{x} \times r\right)\left(r \times \mathrm{id}_{x}\right)\left(\mathrm{id}_{x} \times r\right)
$$

We say that (X, r) is non-degenerate if, for every $x \in X, \sigma_{X}$ and τ_{x} are bijective, and involutive if $r^{2}=\mathrm{id}_{X \times X}$.

Definition ([Drinfel'd, 1992])

A set-theoretic solution of the Yang-Baxter equation is a couple (X, r), where $X \neq \emptyset$ is a set, and

$$
\begin{aligned}
r: X \times X & \rightarrow X \times X \\
(x, y) & \mapsto\left(\sigma_{x}(y), \tau_{y}(x)\right)
\end{aligned}
$$

is a bijective map satisfying

$$
\left(r \times \mathrm{id}_{X}\right)\left(\mathrm{id}_{x} \times r\right)\left(r \times \mathrm{id}_{X}\right)=\left(\mathrm{id}_{x} \times r\right)\left(r \times \mathrm{id}_{x}\right)\left(\mathrm{id}_{X} \times r\right)
$$

We say that (X, r) is non-degenerate if, for every $x \in X, \sigma_{x}$ and τ_{X} are bijective, and involutive if $r^{2}=\mathrm{id} x \times X$. For us, a solution is a non-degenerate set-theoretic solution of the Yang-Baxter equation.

Yang-Baxter and (skew) braces

Theorem ([Rump, 2007], [Guarnieri and Vendramin, 2017])
Let (G, \cdot, \circ) be a skew brace.

Yang-Baxter and (skew) braces

Theorem ([Rump, 2007], [Guarnieri and Vendramin, 2017])

Let (G, \cdot, \circ) be a skew brace. Then

$$
r:(g, h) \mapsto\left(g^{-1} \cdot(g \circ h), \overline{g^{-1} \cdot(g \circ h)} \circ g \circ h\right)
$$

is a solution for G.

Theorem ([Rump, 2007], [Guarnieri and Vendramin, 2017])
Let (G, \cdot, \circ) be a skew brace. Then

$$
r:(g, h) \mapsto\left(g^{-1} \cdot(g \circ h), \overline{g^{-1} \cdot(g \circ h)} \circ g \circ h\right)
$$

is a solution for G.
The solution (G, r) is involutive if and only if (G, \cdot, \circ) is a brace, that is, if (G, \cdot) is abelian.

Definition ([Rump, 2019], [Koch and Truman, 2020a])

Let (G, \cdot, \circ) be a skew brace. The opposite skew brace is $\left(G, \cdot^{\prime}, \circ\right)$, where, for every $g, h \in G, g{ }^{\prime} h=h \cdot g$.

Definition ([Rump, 2019], [Koch and Truman, 2020a])

Let (G, \cdot, \circ) be a skew brace. The opposite skew brace is $\left(G,!^{\prime}, \circ\right)$, where, for every $g, h \in G, g{ }^{\prime} h=h \cdot g$.

Given a bi-skew brace (G, \cdot, \circ), we find (up to) four solutions for G :

Definition ([Rump, 2019], [Koch and Truman, 2020a])

Let (G, \cdot, \circ) be a skew brace. The opposite skew brace is $\left(G,!^{\prime}, \circ\right)$, where, for every $g, h \in G, g{ }^{\prime} h=h \cdot g$.

Given a bi-skew brace (G, \cdot, \circ), we find (up to) four solutions for G :

$$
(G, \cdot, \circ) \rightsquigarrow(g, h) \mapsto\left(g^{-1} \cdot(g \circ h), \overline{g^{-1} \cdot(g \circ h)} \circ g \circ h\right),
$$

Definition ([Rump, 2019], [Koch and Truman, 2020a])

Let (G, \cdot, o) be a skew brace. The opposite skew brace is $\left(G, I^{\prime}, o\right)$, where, for every $g, h \in G, g{ }^{\prime} h=h \cdot g$.

Given a bi-skew brace (G, \cdot, \circ), we find (up to) four solutions for G :

$$
\begin{aligned}
& (G, \cdot, \circ) \rightsquigarrow(g, h) \mapsto\left(g^{-1} \cdot(g \circ h), \overline{g^{-1} \cdot(g \circ h)} \circ g \circ h\right), \\
& \left(G, .^{\prime}, \circ\right) \rightsquigarrow(g, h) \mapsto\left((g \circ h) \cdot g^{-1}, \overline{(g \circ h) \cdot g^{-1}} \circ g \circ h\right),
\end{aligned}
$$

Definition ([Rump, 2019], [Koch and Truman, 2020a])

Let (G, \cdot, \circ) be a skew brace. The opposite skew brace is $\left(G, \iota^{\prime}, \circ\right)$, where, for every $g, h \in G, g{ }^{\prime} h=h \cdot g$.

Given a bi-skew brace (G, \cdot, \circ), we find (up to) four solutions for G :

$$
\begin{aligned}
& (G, \cdot, \circ) \rightsquigarrow(g, h) \mapsto\left(g^{-1} \cdot(g \circ h), \overline{g^{-1} \cdot(g \circ h)} \circ g \circ h\right), \\
& \left(G, .^{\prime}, \circ\right) \rightsquigarrow(g, h) \mapsto\left((g \circ h) \cdot g^{-1}, \overline{(g \circ h) \cdot g^{-1}} \circ g \circ h\right), \\
& (G, \circ, \cdot) \rightsquigarrow(g, h) \mapsto\left(\bar{g} \circ(g \cdot h),(\bar{g} \circ(g \cdot h))^{-1} \cdot g \cdot h\right),
\end{aligned}
$$

Definition ([Rump, 2019], [Koch and Truman, 2020a])

Let (G, \cdot, o) be a skew brace. The opposite skew brace is $\left(G, \iota^{\prime}, o\right)$, where, for every $g, h \in G, g{ }^{\prime} h=h \cdot g$.

Given a bi-skew brace (G, \cdot, \circ), we find (up to) four solutions for G :

$$
\begin{aligned}
& (G, \cdot, \circ) \rightsquigarrow(g, h) \mapsto\left(g^{-1} \cdot(g \circ h), \overline{g^{-1} \cdot(g \circ h)} \circ g \circ h\right), \\
& \left(G, \ddots^{\prime}, \circ\right) \rightsquigarrow(g, h) \mapsto\left((g \circ h) \cdot g^{-1}, \overline{(g \circ h) \cdot g^{-1}} \circ g \circ h\right), \\
& (G, \circ \cdot) \rightsquigarrow(g, h) \mapsto\left(\bar{g} \circ(g \cdot h),(\bar{g} \circ(g \cdot h))^{-1} \cdot g \cdot h\right), \\
& \left(G, \circ^{\prime}, \cdot\right) \rightsquigarrow(g, h) \mapsto\left((g \cdot h) \circ \bar{g},((g \cdot h) \circ \bar{g})^{-1} \cdot g \cdot h\right) .
\end{aligned}
$$

Yang-Baxter and (bi)-gamma functions

We may rewrite the solutions so that they depend only on • and γ.

Yang-Baxter and (bi)-gamma functions

We may rewrite the solutions so that they depend only on • and γ.
Theorem ([Caranti and LS, 2021])
Let (G, \cdot) be a group, and γ be a gamma function.

Yang-Baxter and (bi)-gamma functions

We may rewrite the solutions so that they depend only on • and γ.
Theorem ([Caranti and LS, 2021])
Let (G, \cdot) be a group, and γ be a gamma function. The we get (up to) two solutions:

Yang-Baxter and (bi)-gamma functions

We may rewrite the solutions so that they depend only on • and γ.
Theorem ([Caranti and LS, 2021])
Let (G, \cdot) be a group, and γ be a gamma function. The we get (up to) two solutions:

$$
\left.(g, h) \mapsto\left(\gamma^{\gamma(g)_{h}}, \gamma^{\gamma(\gamma(g) h)^{-1}(\gamma(g)} h^{-1} \cdot g \cdot \gamma(g) h\right)\right),
$$

Yang-Baxter and (bi)-gamma functions

We may rewrite the solutions so that they depend only on • and γ.
Theorem ([Caranti and LS, 2021])
Let (G, \cdot) be a group, and γ be a gamma function. The we get (up to) two solutions:

$$
\begin{aligned}
& (g, h) \mapsto\left(\gamma(g)_{h}, \gamma\left(\gamma(g)_{h}\right)^{-1}\left(\gamma(g)^{-1} \cdot g \cdot \gamma(g) h\right)\right), \\
& (g, h) \mapsto\left({ }^{\iota(g) \gamma(g)^{\prime}}, \gamma^{\gamma(\iota(g) \gamma(g) h)^{-1}} g\right) .
\end{aligned}
$$

Yang-Baxter and (bi)-gamma functions

We may rewrite the solutions so that they depend only on • and γ.
Theorem ([Caranti and LS, 2021])
Let (G, \cdot) be a group, and γ be a gamma function. The we get (up to) two solutions:

$$
\begin{aligned}
& (g, h) \mapsto\left(\gamma(g)_{h}, \gamma\left(\gamma(g)_{h}\right)^{-1}\left(\gamma(g)^{-1} \cdot g \cdot \gamma(g) h\right)\right), \\
& (g, h) \mapsto\left({ }^{\iota(g) \gamma(g)^{\prime}}, \gamma^{\gamma(\iota(g) \gamma(g) h)^{-1}} g\right) .
\end{aligned}
$$

If in addition γ is a bi-gamma function, then we get (up to) other two solutions:

Yang-Baxter and (bi)-gamma functions

We may rewrite the solutions so that they depend only on • and γ.
Theorem ([Caranti and LS, 2021])
Let (G, \cdot) be a group, and γ be a gamma function. The we get (up to) two solutions:

$$
\begin{aligned}
& (g, h) \mapsto\left(\gamma(g)_{h}, \gamma^{\left.\left(\gamma(g)_{h}\right)^{-1}\left(\gamma(g) h^{-1} \cdot g \cdot \gamma(g) h\right)\right),}\right. \\
& (g, h) \mapsto\left({ }^{\left.\iota(g) \gamma(g)_{h}, \gamma^{\iota(g) \gamma(g) h)^{-1}} g\right) .} .\right.
\end{aligned}
$$

If in addition γ is a bi-gamma function, then we get (up to) other two solutions:

$$
(g, h) \mapsto\left(\gamma\left(g^{-1}\right) h, \gamma\left(g^{-1}\right) h^{-1} \cdot g \cdot h\right),
$$

Yang-Baxter and (bi)-gamma functions

We may rewrite the solutions so that they depend only on • and γ.
Theorem ([Caranti and LS, 2021])
Let (G, \cdot) be a group, and γ be a gamma function. The we get (up to) two solutions:

$$
\begin{aligned}
& \left.(g, h) \mapsto\left(\gamma^{\gamma(g)} h, \gamma^{\left(\gamma(g)_{h}\right)^{-1}\left(\gamma(g)^{-1}\right.} \cdot g \cdot \gamma(g)_{h}\right)\right), \\
& (g, h) \mapsto\left({ }^{\left.\iota(g) \gamma(g)_{h}, \gamma^{\iota(g) \gamma(g) h)^{-1}} g\right) .} .\right.
\end{aligned}
$$

If in addition γ is a bi-gamma function, then we get (up to) other two solutions:

$$
\begin{aligned}
& (g, h) \mapsto\left(\gamma\left(g^{-1}\right) h, \gamma\left(g^{-1}\right) h^{-1} \cdot g \cdot h\right), \\
& (g, h) \mapsto\left(g \cdot h \cdot \gamma(h) g^{-1}, \gamma(h) g^{-1}\right) .
\end{aligned}
$$

Yang-Baxter in our setting

Theorem ([Caranti and LS, 2021])
 Let (G, \cdot) be a group, and $\psi \in \operatorname{End}(G, \cdot)$.

Yang-Baxter in our setting

Theorem ([Caranti and LS, 2021])
 Let (G, \cdot) be a group, and $\psi \in \operatorname{End}(G, \cdot)$. If ${ }^{\psi}[[G, \psi], G] \leq Z(G, \cdot)$, then we get (up to) four solutions:

Yang-Baxter in our setting

Theorem ([Caranti and LS, 2021])

Let (G, \cdot) be a group, and $\psi \in \operatorname{End}(G, \cdot)$. If $\psi[[G, \psi], G] \leq Z(G, \cdot)$, then we get (up to) four solutions:
$(g, h) \mapsto\left({ }^{\psi} g^{-1} \cdot h \cdot{ }^{\psi} g,{ }^{\psi}\left(g^{-1} \cdot h\right) \cdot h^{-1} \cdot{ }^{\psi} g \cdot g \cdot{ }^{\psi} g^{-1} \cdot h \cdot{ }^{\psi}\left(h^{-1} \cdot g\right)\right)$,

Yang-Baxter in our setting

Theorem ([Caranti and LS, 2021])

Let (G, \cdot) be a group, and $\psi \in \operatorname{End}(G, \cdot)$. If $\psi[[G, \psi], G] \leq Z(G, \cdot)$, then we get (up to) four solutions:
$(g, h) \mapsto\left({ }^{\psi} g^{-1} \cdot h \cdot{ }^{\psi} g,{ }^{\psi}\left(g^{-1} \cdot h\right) \cdot h^{-1} \cdot{ }^{\psi} g \cdot g \cdot{ }^{\psi} g^{-1} \cdot h \cdot{ }^{\psi}\left(h^{-1} \cdot g\right)\right)$,
$(g, h) \mapsto\left(g \cdot{ }^{\psi} g^{-1} \cdot h \cdot{ }^{\psi} g \cdot g^{-1},{ }^{\psi} h \cdot g \cdot{ }^{\psi} h^{-1}\right)$,

Yang-Baxter in our setting

Theorem ([Caranti and LS, 2021])

Let (G, \cdot) be a group, and $\psi \in \operatorname{End}(G, \cdot)$. If ${ }^{\psi}[[G, \psi], G] \leq Z(G, \cdot)$, then we get (up to) four solutions:
$(g, h) \mapsto\left({ }^{\psi} g^{-1} \cdot h \cdot{ }^{\psi} g,{ }^{\psi}\left(g^{-1} \cdot h\right) \cdot h^{-1} \cdot{ }^{\psi} g \cdot g \cdot{ }^{\psi} g^{-1} \cdot h \cdot{ }^{\psi}\left(h^{-1} \cdot g\right)\right)$,
$(g, h) \mapsto\left(g \cdot{ }^{\psi} g^{-1} \cdot h \cdot{ }^{\psi} g \cdot g^{-1},{ }^{\psi} h \cdot g \cdot{ }^{\psi} h^{-1}\right)$,
$(g, h) \mapsto\left({ }^{\psi} g \cdot h \cdot{ }^{\psi} g^{-1},{ }^{\psi} g \cdot h^{-1} \cdot{ }^{\psi} g^{-1} \cdot g \cdot h\right)$,

Yang-Baxter in our setting

Theorem ([Caranti and LS, 2021])

Let (G, \cdot) be a group, and $\psi \in \operatorname{End}(G, \cdot)$. If ${ }^{\psi}[[G, \psi], G] \leq Z(G, \cdot)$, then we get (up to) four solutions:
$(g, h) \mapsto\left({ }^{\psi} g^{-1} \cdot h \cdot{ }^{\psi} g,{ }^{\psi}\left(g^{-1} \cdot h\right) \cdot h^{-1} \cdot{ }^{\psi} g \cdot g \cdot{ }^{\psi} g^{-1} \cdot h \cdot{ }^{\psi}\left(h^{-1} \cdot g\right)\right)$,
$(g, h) \mapsto\left(g \cdot{ }^{\psi} g^{-1} \cdot h \cdot{ }^{\psi} g \cdot g^{-1},{ }^{\psi} h \cdot g \cdot{ }^{\psi} h^{-1}\right)$,
$(g, h) \mapsto\left({ }^{\psi} g \cdot h \cdot{ }^{\psi} g^{-1},{ }^{\psi} g \cdot h^{-1} \cdot{ }^{\psi} g^{-1} \cdot g \cdot h\right)$,
$(g, h) \mapsto\left(g \cdot h \cdot{ }^{\psi} h^{-1} \cdot g^{-1} \cdot{ }^{\psi} h,{ }^{\psi} h^{-1} \cdot g \cdot{ }^{\psi} h\right)$.

Yang-Baxter in our setting

Theorem ([Caranti and LS, 2021])
Let (G, \cdot) be a group, and $\psi \in \operatorname{End}(G, \cdot)$. If ${ }^{\psi}[[G, \psi], G] \leq Z(G, \cdot)$, then we get (up to) four solutions:
$(g, h) \mapsto\left({ }^{\psi} g^{-1} \cdot h \cdot{ }^{\psi} g,{ }^{\psi}\left(g^{-1} \cdot h\right) \cdot h^{-1} \cdot{ }^{\psi} g \cdot g \cdot{ }^{\psi} g^{-1} \cdot h \cdot{ }^{\psi}\left(h^{-1} \cdot g\right)\right)$,
$(g, h) \mapsto\left(g \cdot{ }^{\psi} g^{-1} \cdot h \cdot{ }^{\psi} g \cdot g^{-1},{ }^{\psi} h \cdot g \cdot{ }^{\psi} h^{-1}\right)$,
$(g, h) \mapsto\left({ }^{\psi} g \cdot h \cdot{ }^{\psi} g^{-1},{ }^{\psi} g \cdot h^{-1} \cdot{ }^{\psi} g^{-1} \cdot g \cdot h\right)$,
$(g, h) \mapsto\left(g \cdot h \cdot{ }^{\psi} h^{-1} \cdot g^{-1} \cdot{ }^{\psi} h,{ }^{\psi} h^{-1} \cdot g \cdot{ }^{\psi} h\right)$.

These coincide with the solutions found in [Koch, 2020], where ψ is abelian.

Hopf Galois structures

Main definition and results

Fix a finite Galois extension L / K with Galois group (G, \cdot).

Fix a finite Galois extension L / K with Galois group (G, \cdot).

Definition

A Hopf Galois structure on L / K consists of a cocommutative K-Hopf algebra H, together with an action of H on L satisfying certain technical properties.

Fix a finite Galois extension L / K with Galois group (G, \cdot).
Definition
A Hopf Galois structure on L / K consists of a cocommutative K-Hopf algebra H, together with an action of H on L satisfying certain technical properties.

Theorem ([Greither and Pareigis, 1987])
The Hopf Galois structures on L/K are in bijective correspondence with the regular subgroups of $\operatorname{Perm}(G)$ normalised by $\lambda(G)$.

Fix a finite Galois extension L / K with Galois group (G, \cdot).
Definition
A Hopf Galois structure on L / K consists of a cocommutative K-Hopf algebra H, together with an action of H on L satisfying certain technical properties.

Theorem ([Greither and Pareigis, 1987])
The Hopf Galois structures on L / K are in bijective correspondence with the regular subgroups of $\operatorname{Perm}(G)$ normalised by $\lambda(G)$.

The K-Hopf algebra $L[N]^{G}$ corresponds to the subgroup N.

Fix a finite Galois extension L / K with Galois group (G, \cdot).
Definition
A Hopf Galois structure on L / K consists of a cocommutative K-Hopf algebra H, together with an action of H on L satisfying certain technical properties.

Theorem ([Greither and Pareigis, 1987])
The Hopf Galois structures on L / K are in bijective correspondence with the regular subgroups of $\operatorname{Perm}(G)$ normalised by $\lambda(G)$.

The K-Hopf algebra $L[N]^{G}$ corresponds to the subgroup N. Moreover, the K-sub-Hopf algebras of $L[N]^{G}$ are in bijective correspondence with the subgroups of N normalised by $\lambda(G)$.

We would like to use gamma functions to analyse Hopf Galois structures.

We would like to use gamma functions to analyse Hopf Galois structures. Notice that a gamma function for (G, \cdot) yields a regular subgroup which normalises $\lambda(G)$,

We would like to use gamma functions to analyse Hopf Galois structures. Notice that a gamma function for (G, \cdot) yields a regular subgroup which normalises $\lambda(G)$, while we need a regular subgroup normalised by $\lambda(G)$.

We would like to use gamma functions to analyse Hopf Galois structures. Notice that a gamma function for (G, \cdot) yields a regular subgroup which normalises $\lambda(G)$, while we need a regular subgroup normalised by $\lambda(G)$.

Fact
If γ is a bi-gamma function for (G, \cdot), then

We would like to use gamma functions to analyse Hopf Galois structures. Notice that a gamma function for (G, \cdot) yields a regular subgroup which normalises $\lambda(G)$, while we need a regular subgroup normalised by $\lambda(G)$.

Fact
If γ is a bi-gamma function for (G, \cdot), then

$$
N=\{\lambda(g) \gamma(g): g \in G\}
$$

We would like to use gamma functions to analyse Hopf Galois structures. Notice that a gamma function for (G, \cdot) yields a regular subgroup which normalises $\lambda(G)$, while we need a regular subgroup normalised by $\lambda(G)$.

Fact
If γ is a bi-gamma function for (G, \cdot), then

$$
N=\{\lambda(g) \gamma(g): g \in G\}
$$

is a regular subgroup of Perm (G) which normalises, and is normalised by, $\lambda(G)$.

We would like to use gamma functions to analyse Hopf Galois structures. Notice that a gamma function for (G, \cdot) yields a regular subgroup which normalises $\lambda(G)$, while we need a regular subgroup normalised by $\lambda(G)$.

Fact
If γ is a bi-gamma function for (G, \cdot), then

$$
N=\{\lambda(g) \gamma(g): g \in G\}
$$

is a regular subgroup of Perm (G) which normalises, and is normalised by, $\lambda(G)$. In particular, $L[N]^{G}$ gives a Hopf Galois structure on L / K.

Hopf Galois structures in our setting

Let L / K be a finite Galois extension with Galois group (G, \cdot),

Let L / K be a finite Galois extension with Galois group (G, \cdot), and $\psi \in \operatorname{End}(G, \cdot)$ such that $\psi[[G, \psi], G] \leq Z(G, \cdot)$.

Let L / K be a finite Galois extension with Galois group (G, \cdot), and $\psi \in \operatorname{End}(G, \cdot)$ such that $\psi[[G, \psi], G] \leq Z(G, \cdot)$.
Then γ, defined by $\gamma(g)=\iota\left({ }^{\psi} g^{-1}\right)$, is a bi-gamma function,

Let L / K be a finite Galois extension with Galois group (G, \cdot), and $\psi \in \operatorname{End}(G, \cdot)$ such that $\psi[[G, \psi], G] \leq Z(G, \cdot)$.
Then γ, defined by $\gamma(g)=\iota\left({ }^{\psi} g^{-1}\right)$, is a bi-gamma function, and so $L[N]^{G}$ gives a Hopf Galois structure on L / K, where

$$
N=\left\{\lambda(g) \iota\left(\psi^{\psi} g^{-1}\right): g \in G\right\}
$$

Let L / K be a finite Galois extension with Galois group (G, \cdot), and $\psi \in \operatorname{End}(G, \cdot)$ such that $\psi[[G, \psi], G] \leq Z(G, \cdot)$.
Then γ, defined by $\gamma(g)=\iota\left({ }^{\psi} g^{-1}\right)$, is a bi-gamma function, and so $L[N]^{G}$ gives a Hopf Galois structure on L / K, where

$$
N=\left\{\lambda(g) \iota\left({ }^{\psi} g^{-1}\right): g \in G\right\}
$$

Question
Can we determine the type of N ?

Five subgroups of N

As in [Koch, 2020], we can always find (up to) five subgroups of N normalised by $\lambda(G)$, and these correspond to five K-sub-Hopf algebras of $L[N]^{G}$.

As in [Koch, 2020], we can always find (up to) five subgroups of N normalised by $\lambda(G)$, and these correspond to five K-sub-Hopf algebras of $L[N]^{G}$.
For example, the λ-points and ρ-points, introduced in [Koch and Truman, 2020b]:

As in [Koch, 2020], we can always find (up to) five subgroups of N normalised by $\lambda(G)$, and these correspond to five K-sub-Hopf algebras of $L[N]^{G}$.
For example, the λ-points and ρ-points, introduced in [Koch and Truman, 2020b]:

$$
\Lambda_{N}=N \cap \lambda(G)
$$

As in [Koch, 2020], we can always find (up to) five subgroups of N normalised by $\lambda(G)$, and these correspond to five K-sub-Hopf algebras of $L[N]^{G}$.

For example, the λ-points and ρ-points, introduced in [Koch and Truman, 2020b]:

$$
\Lambda_{N}=N \cap \lambda(G)=\{\lambda(g): g \in \operatorname{ker}(\gamma)\}
$$

As in [Koch, 2020], we can always find (up to) five subgroups of N normalised by $\lambda(G)$, and these correspond to five K-sub-Hopf algebras of $L[N]^{G}$.
For example, the λ-points and ρ-points, introduced in [Koch and Truman, 2020b]:

$$
\begin{aligned}
\Lambda_{N} & =N \cap \lambda(G)=\{\lambda(g): g \in \operatorname{ker}(\gamma)\} \\
& =\{\lambda(g): g \text { satisfies } \psi \in Z(G, \cdot)\},
\end{aligned}
$$

As in [Koch, 2020], we can always find (up to) five subgroups of N normalised by $\lambda(G)$, and these correspond to five K-sub-Hopf algebras of $L[N]^{G}$.
For example, the λ-points and ρ-points, introduced in [Koch and Truman, 2020b]:

$$
\begin{aligned}
\Lambda_{N} & =N \cap \lambda(G)=\{\lambda(g): g \in \operatorname{ker}(\gamma)\} \\
& =\{\lambda(g): g \text { satisfies } \psi g \in Z(G, \cdot)\}, \\
P_{N} & =N \cap \rho(G)
\end{aligned}
$$

As in [Koch, 2020], we can always find (up to) five subgroups of N normalised by $\lambda(G)$, and these correspond to five K-sub-Hopf algebras of $L[N]^{G}$.
For example, the λ-points and ρ-points, introduced in [Koch and Truman, 2020b]:

$$
\begin{aligned}
\Lambda_{N} & =N \cap \lambda(G)=\{\lambda(g): g \in \operatorname{ker}(\gamma)\} \\
& =\left\{\lambda(g): g \text { satisfies }{ }^{\psi} g \in Z(G, \cdot)\right\} \\
P_{N} & =N \cap \rho(G)=\left\{\rho(g): g \text { satisfies } \gamma(g)=\iota\left(g^{-1}\right)\right\}
\end{aligned}
$$

As in [Koch, 2020], we can always find (up to) five subgroups of N normalised by $\lambda(G)$, and these correspond to five K-sub-Hopf algebras of $L[N]^{G}$.
For example, the λ-points and ρ-points, introduced in [Koch and Truman, 2020b]:

$$
\begin{aligned}
\Lambda_{N} & =N \cap \lambda(G)=\{\lambda(g): g \in \operatorname{ker}(\gamma)\} \\
& =\left\{\lambda(g): g \text { satisfies }{ }^{\psi} g \in Z(G, \cdot)\right\}, \\
P_{N} & =N \cap \rho(G)=\left\{\rho(g): g \text { satisfies } \gamma(g)=\iota\left(g^{-1}\right)\right\} \\
& =\left\{\rho(g): g \text { satisfies } g \cdot \psi g^{-1} \in Z(G, \cdot)\right\} .
\end{aligned}
$$

As in [Koch, 2020], we can always find (up to) five subgroups of N normalised by $\lambda(G)$, and these correspond to five K-sub-Hopf algebras of $L[N]^{G}$.
For example, the λ-points and ρ-points, introduced in [Koch and Truman, 2020b]:

$$
\begin{aligned}
\Lambda_{N} & =N \cap \lambda(G)=\{\lambda(g): g \in \operatorname{ker}(\gamma)\} \\
& =\left\{\lambda(g): g \text { satisfies }{ }^{\psi} g \in Z(G, \cdot)\right\}, \\
P_{N} & =N \cap \rho(G)=\left\{\rho(g): g \text { satisfies } \gamma(g)=\iota\left(g^{-1}\right)\right\} \\
& =\left\{\rho(g): g \text { satisfies } g \cdot \psi^{-1} \in Z(G, \cdot)\right\} .
\end{aligned}
$$

Some of the five subgroups may coincide, but we can find examples in which they are all distinct.

- If ψ is a fixed point free abelian endomorphism, then $N \cong(G, \cdot)([C h i l d s, 2013]$, [Koch, 2020]).
- If ψ is a fixed point free abelian endomorphism, then $N \cong(G, \cdot)([C h i l d s, 2013]$, [Koch, 2020] $)$.
- If ψ is different from zero and idempotent, then for every $n \geq 1, \psi^{n}=\psi$,
- If ψ is a fixed point free abelian endomorphism, then $N \cong(G, \cdot)([C h i l d s, 2013]$, [Koch, 2020] $)$.
- If ψ is different from zero and idempotent, then for every $n \geq 1, \psi^{n}=\psi$, and ${ }^{\psi} G=\left\{g \in G:{ }^{\psi} g=g\right\}$.
- If ψ is a fixed point free abelian endomorphism, then $N \cong(G, \cdot)([C h i l d s, 2013]$, [Koch, 2020] $)$.
- If ψ is different from zero and idempotent, then for every $n \geq 1, \psi^{n}=\psi$, and ${ }^{\psi} G=\{g \in G: \psi g=g\}$. We can use a version of the Fitting's Lemma for groups ([Caranti, 1985]) to deduce that $N \cong(\operatorname{ker}(\psi), \cdot) \times\left({ }^{\psi} G, \cdot\right)$.
E. Caranti, A. (1985).

Finite p-groups of exponent p^{2} in which each element commutes with its endomorphic images.
J. Algebra, 97(1):1-13.
E. Caranti, A. (2020).

Bi-skew braces and regular subgroups of the holomorph.
J. Algebra, 562:647-665.

E Caranti, A. and LS (2021).
From endomorphisms to bi-skew braces, regular subgroups, normalising graphs, the Yang-Baxter equation, and Hopf Galois structures.
https://arxiv.org/abs/2104.01582.

E Childs, L. N. (2013)

Fixed-point free endomorphisms and Hopf Galois structures.
Proc. Amer. Math. Soc., 141(4):1255-1265.
E. Childs, L. N. (2019).

Bi-skew braces and Hopf Galois structures.
New York J. Math., 25:574-588.
E Drinfel'd, V. G. (1992).
On some unsolved problems in quantum group theory.
In Quantum groups (Leningrad, 1990), volume 1510 of Lecture Notes in Math., pages 1-8. Springer, Berlin.
E. Greither, C. and Pareigis, B. (1987).

Hopf Galois theory for separable field extensions.
J. Algebra, 106(1):239-258.

Ei Guarnieri, L. and Vendramin, L. (2017).

Skew braces and the Yang-Baxter equation.
Math. Comp., 86(307):2519-2534.
E Koch, A. (2020)
Abelian maps, bi-skew braces, and opposite pairs of Hopf-Galois structures.
https://arxiv.org/abs/2007.08967.
E Koch, A. and Truman, P. J. (2020a).
Opposite skew left braces and applications.
J. Algebra, 546:218-235.

E Koch, A. and Truman, P. J. (2020b).
Skew left braces and isomorphism problems for Hopf-Galois structures on Galois extensions.
https://arxiv.org/abs/2005.05809.

E. Rump, W. (2007).

Braces, radical rings, and the quantum Yang-Baxter equation. J. Algebra, 307(1):153-170.
E. Rump, W. (2019).

A covering theory for non-involutive set-theoretic solutions to the Yang-Baxter equation.
J. Algebra, 520:136-170.

